Covering problems in hierarchical poset spaces over finite rings

Marcos V. P. Sprefico and Otávio J. N. T. N. dos Santos
INMA - UFMS and UEMS - Ponta Porã
July - 2018
The famous Football pool problem
Contents

- The famous Football pool problem
- The Covering Problem
Contents

- The famous Football pool problem
- The Covering Problem
- Poset spaces
The famous Football pool problem
The Covering Problem
Poset spaces
Covering problems in poset spaces
Contents

- The famous Football pool problem
- The Covering Problem
- Poset spaces
- Covering problems in poset spaces
- Covering problem in hierarchical poset space

Marcos V. P. Spreafico and Otávio J. N. T. N. dos Santos
Covering problems in hierarchical poset spaces over finite rings
The famous Football pool problem
The Covering Problem
Poset spaces
Covering problems in poset spaces
Covering problem in hierarchical poset space
Short-covering problem in hierarchical poset space
Predict the outcome of the 6 matches below:

1. Djurgaarden v Mariupol
 - HOME
 - DRAW
 - AWAY

2. Jagiellonia Bialystok v Rio Ave
 - HOME
 - DRAW
 - AWAY

3. Dinamo Brest v Atromitos
 - HOME
 - DRAW
 - AWAY

4. Lask Linz v Lillestrom
 - HOME
 - DRAW
 - AWAY

5. Aberdeen v Burnley
 - HOME
 - DRAW
 - AWAY

6. The Strongest v Wilstermann
 - HOME
 - DRAW
 - AWAY
“Which is the minimum number of bets necessary to guarantee n-1 correct results in n matches?”
Which is the minimum number of words in a code with the property that all words in the space F^n_3 are within Hamming distance 1 from some codeword.
Given integers $n \geq 1$, $q \geq 2$ and $R \geq 0$, an alphabet A with $|A| = q$

(A^n, d): the set of n-tuples with entries in A endowed with a metric d.

$B(c, R) = \{x \in A^n : d(x, c) \leq R\}$: the ball with center $c \in A^n$ and radius R.

Definition

A subset C of A^n is a q-ary R-covering of A^n if

$$\bigcup_{c \in C} B(c, R) = A^n.$$
The Covering Problem

- $K_q(n, R)$: the minimal size of a q-ary R-covering of length n.
The Covering Problem

- $K_q(n, R)$: the minimal size of a q-ary R-covering of length n.

Is to determine $K_q(n, R)$
... for hamming distance and finite fields.

- 1948: Taussky and Todd introduce the numbers $K_q(n, 1)$ from a group-theorethical viewpoint;
... for hamming distance and finite fields.

- **1948**: Taussky and Todd introduce the numbers $K_q(n, 1)$ from a group-theoretical viewpoint;
- **60’s**: the problem received a lot of contributions and the problem was introduced in the coding theory context in the 60’s as covering codes with radius 1.
... for hamming distance and finite fields.

- 1948: Taussky and Todd introduce the numbers $K_q(n, 1)$ from a group-theoretical viewpoint;
- 60’s: the problem received a lot of contributions and the problem was introduced in the coding theory context in the 60’s as covering codes with radius 1.
- 80’s: initially investigated for arbitrary R by Carnielli.
... for hamming distance and finite fields.

- **1948:** Taussky and Todd introduce the numbers $K_q(n, 1)$ from a group-theoretical viewpoint;
- **60’s:** the problem received a lot of contributions and the problem was introduced in the coding theory context in the 60’s as covering codes with radius 1.
- **80’s:** initially investigated for arbitrary R by Carnielli.
- **Nowadays:** Still an **open problem**.
Poset \mathcal{P}: Partially ordered set on $\{1, 2, ..., n\}$.

Order Ideal: $I \subseteq \mathcal{P}$ is an *ideal* of \mathcal{P} if $a \in I$, $b \in \mathcal{P}$ and $b \preceq a$ then $b \in I$.

the ideal generated by A: denote by $\langle A \rangle$ the smallest ideal containing A.

Marcos V. P. Spreafico and Otávio J. N. T. N. dos Santos

Covering problems in hierarchical poset spaces over finite rings
Marcos V. P. Spreafico and Otávio J. N. T. N. dos Santos

Covering problems in hierarchical poset spaces over finite rings

\[P = ([8], \leq) \]
\[(\{8\}) = \{1, 2, 3, 6, 8\}\]
Rank of $j \in \mathcal{P}$: $l(j) = \max \{|C| : C \subset \langle j \rangle \text{ and } C \text{ is a chain} \}$

$l(8) = 3$ \hspace{1cm} $l(7) = 2$
The k-th level of P. $H_k = \{i \in X; l(i) = k\}$, $H_1 = \{1, 2, 3, 4\}$, $H_2 = \{5, 6, 7\}$ and $H_3 = \{8\}$
Examples of Posets

Anti-Chain Poset

Figure: A ([7], ≤) anti-chain poset.
Examples of Posets

Chain Poset

Figure: A ([5], \leq) chain poset.
Examples of Posets

NRT Posets

Figure: A ([9], \leq) NRT poset
Hierarchical Poset

Figure: A (9; 4, 2, 3) hierarchical poset.
\(\mathbb{X}_q^n \): set of \(n \)-tuples with entries in a finite ring with \(q \) elements.

Support of a vector: \(\text{supp}(x) := \{ i \in P : x_i \neq 0 \} \).

\(P \)-weight \((\omega_P) \): \(\omega_P(x) := |\langle \text{supp}(x) \rangle| \).

\(P \)-distance:
\[
d_P(x, y) = \omega_P(x - y).
\]

Poset space: \((\mathbb{X}_q^n, d_P) \).
Let \mathcal{A}_n be an antichain on $[n]$. The metric $d_{\mathcal{A}_n}$ is the classical Hamming distance of coding theory.

In 2008, Nakaoka and dos Santos introduced short-covering problem in Hamming spaces over finite rings:

Given a integer R, which is the minimum number of words in a code with the property that all words in the space \mathbb{X}_q^n are within Hamming distance R from a multiple of some codeword.
Let C_n be a chain poset. In 2010, Yildiz et al. solved the covering and short covering problems on this poset space over finite rings.
Let \(n = mr \) and let \(\mathbb{Z}[n] \) be a disjoint union \(m \) of chains of length \(r \). The arising metric space is called the \(NRT \) space. In 2015, Castoldi and Carmelo explore the covering problem in NRT spaces:

The Covering Problem in Rosenbloom-Tsfasman Spaces

André G. Castoldi* Emerson L. Monte Carmelo †
Departamento de Matemática
Universidade Estadual de Maringá
Maringá, Brazil
guerinocastoldi@yahoo.com.br elmcarmelo@uem.br

Submitted: Jan 16, 2015; Accepted: Aug 14, 2015; Published: Aug 28, 2015
Mathematics Subject Classifications: 94B65, 06A06, 94B25
From now, we will use $\mathbb{H}\left[n(n_1, n_2, ..., n_h) \right]$ to denote a hierarchical poset with h levels.

A poset space defined by a hierarchical poset is called \textit{hierarchical poset space}.

$K_q^\mathbb{H}(n(n_1, n_2, ..., n_h); R)$: minimum size of a R-covering code in the hierarchical poset space.
Denote by $V^H(n(n_1, n_2, \ldots, n_h), R)$ the size (volume) of a ball of radius R in the hierarchical poset space (\mathbb{X}_q^n, d^H). It is easy to see that

Theorem (Ball Covering Bound)

$$K^H_q(n(n_1, n_2, \ldots, n_h); R) \geq \frac{q^n}{V^H(n(n_1, n_2, \ldots, n_h), R)}.$$
Denote by $V^H(n(n_1, n_2, \ldots, n_h), R)$ the size (volume) of a ball of radius R in the hierarchical poset space (\mathbb{X}_q^n, d^H). It is easy to see that

Theorem (Ball Covering Bound)

$$K^H_q(n(n_1, n_2, \ldots, n_h); R) \geq \frac{q^n}{V^H(n(n_1, n_2, \ldots, n_h), R)}.$$

Theorem

$$K^H_q(n(n_1, n_2, \ldots, n_h); R) \leq q^{n-R}.$$
A minimal 1-covering code of \((X^3_2, H[3(2, 1)])\) is

\[C = \{(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)\} \]

So, \(K^H_2(3(2, 1); 1) = 4\).
Let $\delta_i = \sum_{j=1}^{i} n_j$ and for a given integer $R > 0$ set an integer $0 < l \leq h$ such that $\delta_{l-1} < R \leq \delta_l$ and $r = R - \delta_{l-1}$, where $\delta_0 = 0$. Note that, $1 \leq r_i \leq n_i$.
Let $\delta_i = \sum_{j=1}^{i} n_j$ and for a given integer $R > 0$ set an integer $0 < l \leq h$ such that $\delta_{l-1} < R \leq \delta_l$ and $r = R - \delta_{l-1}$, where $\delta_0 = 0$. Note that, $1 \leq r_i \leq n_i$.

Theorem

$$K_q^{\mathbb{H}}(n(n_1, n_2, \ldots, n_h); R) = K_q(n_l, r)q^{n-\delta_l}.$$
Let \(\mathcal{P}\) and \(\mathcal{Q}\) posets on \([n]\) such that \(\mathcal{Q}\) is a refinement of \(\mathcal{P}\), that is, \(\mathcal{P} \subset \mathcal{Q}\). In this case, for \(x, y \in X_q^n\), is easy to see that \(d_{\mathcal{P}}(x, y) \leq d_{\mathcal{Q}}(x, y)\).
Let \mathcal{P} and \mathcal{Q} posets on $[n]$ such that \mathcal{Q} is a refinement of \mathcal{P}, that is, $\mathcal{P} \subset \mathcal{Q}$. In this case, for $x, y \in \mathbb{X}_q^n$, is easy to see that $d_\mathcal{P}(x, y) \leq d_\mathcal{Q}(x, y)$.

Theorem

$$K_q^\mathcal{P}(n; R) \leq K_q^\mathcal{Q}(n; R).$$

Since, $A_n \subset \mathcal{P} \subset C_n$ for all poset \mathcal{P} on $[n]$, we can derive the trivial upper bound for all poset metric space.

Corollary

$$K_q^\mathcal{Q}(n; R) = K_q^{A_n}(n; R) \leq K_q^{\mathcal{P}}(n; R) \leq K_q^{C_n}(n; R) = q^n - R.$$
Let \mathcal{P} and \mathcal{Q} posets on $[n]$ such that \mathcal{Q} is a refinement of \mathcal{P}, that is, $\mathcal{P} \subseteq \mathcal{Q}$. In this case, for $x, y \in \mathbb{X}_q^n$, is easy to see that $d_\mathcal{P}(x, y) \leq d_\mathcal{Q}(x, y)$.

Theorem

$$K_q^\mathcal{P}(n; R) \leq K_q^\mathcal{Q}(n; R).$$

Since, $\mathcal{A}_n \subseteq \mathcal{P} \subseteq \mathcal{C}_n$ for all poset \mathcal{P} on $[n]$, we can derive the trivial upper bound for all poset metric space.
Let \mathcal{P} and \mathcal{Q} posets on $[n]$ such that \mathcal{Q} is a refinement of \mathcal{P}, that is, $\mathcal{P} \subset \mathcal{Q}$. In this case, for $x, y \in \mathbb{X}_q^n$, is easy to see that $d_{\mathcal{P}}(x, y) \leq d_{\mathcal{Q}}(x, y)$.

Theorem

$$K_q^\mathcal{P} (n; R) \leq K_q^\mathcal{Q} (n; R).$$

Corollary

$$K_q(n; R) \overset{(1)}{=} K_q^{A_n} (n; R) \leq K_q^\mathcal{P} (n; R) \leq K_q^{C_n} (n; R) \overset{(2)}{=} q^{n-R}.$$
Short-covering in hierarchical poset spaces

- Ambient space: \mathbb{X}_q^n;
- metric: hierarchical
- Extended ball: $E(c, R) = \bigcup_{\alpha \in \mathbb{X}_q} B(\alpha c, R)$

Definition

Short-covering $H \subset \mathbb{X}_q^n$ is an *R-short covering* of a metric space (\mathbb{X}_q^n, d) if

$$\bigcup_{h \in H} E(h, R) = \mathbb{X}_q^n.$$
On the hierarchical poset space $(X^3_3, \mathcal{H}[3(2, 1)])$ an 1-short covering code is given by

$$C = \{(0, 0, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2)\}.$$

One can easily check that C is minimal, so $C^d_\mathcal{H}(X^3_3, 3, 1) = 4$.

Marcos V. P. Spreafico and Otávio J. N. T. N. dos Santos

Covering problems in hierarchical poset spaces over finite rings
Short-covering in hierarchical poset spaces

- $D(X_q)^*$: zero-divisors of X_q, except the zero.
- $U(X_q)$: the unity elements of X_q.

Theorem

Let $\mathbb{H} = \mathbb{H}[n(n_1, n_2, \ldots, n_h)]$ be the hierarchical poset over $[n]$, with level distribution n_1, n_2, \ldots, n_h. For $i = 1, \ldots, h$, denote $\delta_i = \sum_{j=1}^{i} n_j$ and for a given integer $R > 0$ such that $\delta_{l-1} < R \leq \delta_l$, holds

(i) If $R = \delta_l$, then

$$C^\mathbb{H}(X_q, n, R) = C(X_q, n - R, 0).$$

(ii) If $\delta_{l-1} < R < \delta_l$, then

$$C^\mathbb{H}(X_q, n, R) \leq C(X_q, n_l, r) \left(q^{n-\delta_l} + s(s - 1)|U(X_q)|C(X_q, n - \delta_l, 0)\right) + C(X_q, n - \delta_l, 0),$$

where $r = R - \delta_{l-1}$ and s is the number of orbits of $D(X_q)^*$.
Thank you!